Worksheet #9 Equilibrium Calculations Solve each problem and show all of your work.

1.At equilibrium, a 5.0L flask contains:
 $0.75 \text{ mol of PCl}_5$ 0.50 mol of H2O 7.50 mol of HCl5.00 mol of POCl3
Calculate the Keq for the reaction:
 $PCl_5 (s) + H_2O (g) \hat{a} \ddagger, 2HCl (g) + POCl3 (g)$

Keq = 23

 Keq= 798 for the reaction: 2SO_{2 (g)} + O_{2 (g)} â‡, 2SO_{3 (g)}. In a particular mixture at equilibrium, [SO₂]= 4.20 M and [SO₃]=11.0 M. Calculate the equilibrium [O₂] in this mixture.

$[O_2] = 8.60 \times 10^{-3} M$

3. Consider the following equilibrium:

 $2SO_{2}(g) + O_{2}(g) \hat{a}_{+,,} 2SO_{3}(g)$

When a 0.600 moles of SO_2 and 0.600 moles of O_2 are placed into a 1.00 litre container and allowed to reach equilibrium, the equilibrium [SO₃] is to be 0.250M. Calculate the Keq value.

Keq =1.07

4. Consider the following equilibrium:

 $2 NO_{2(g)}$ â‡, $N_2O_{4(g)}$

If 2.00 moles of NO2 are placed in a 1.00 L flask and allowed to react. At equilibrium 1.80 moles NO2 are present. Calculate the Keq.

5. 2 SO_{2(g)} + O_{2(g)} â‡, 2 SO_{3(g)}
 4.00 moles of SO₂ and 5.00 moles O₂ are placed in a 2.00 L container at 200°C and allowed to reach equilibrium. If the equilibrium concentration of O₂ is 2.00 M, calculate the Keq

Keq = 0.50

6. If the initial $[H_2] = 0.200M$, $[I_2] = 0.200M$ and Keq = 55.6 at 250°C calculate the equilibrium concentrations of all molecules. H₂ (g) + I₂ (g) $\hat{a}_{+,2}$ 2HI (g)

[HI] = 0.315 M $[H_2] = [I_2] = 0.042 \text{ M}$

1.60 moles CO and 1.60 moles H₂O are placed in a 2.00L container at 690 °C (Keq=10.0). Calculate all equilibrium concentrations.
 CO (g) + H₂O (g) â‡, CO₂ (g) + H₂ (g)

```
[CO_2] = [H_2] = 0.608 M [CO] = [H_2O] = 0.192 M
```

8. SO_{3(g)} + NO_(g) â‡, NO_{2(g)} + SO_{2(g)}
 K_{eq} = 0.800 at 100°C. If 4.00 moles of each reactant are placed in a 2.00L container, calculate all equilibrium concentrations at 100°C.

 $[NO_2] = [SO_2] = 0.944 M$ $[SO_3] = [NO] = 1.06 M$

9. Consider the following equilibrium system: $2NO_{2(g)} \hat{a} \ddagger \mathbb{C} N_2O_4$ Two sets of equilibrium data are listed for the same temperature.

Container 1	2.00 L	0.12 moles NO ₂	0.16 moles N ₂ O ₄
Container 2	5.00 L	0.26 moles NO ₂	? moles N ₂ O ₄

Determine the number of moles N_2O_4 in the second container. Get a Keq from the first container and use it for the second container.

Container 1	0.060 M NO ₂	.080 M N ₂ O ₄	Keq	=	[<u>N₂O4</u>] [NO ₂] ²				
Container 2	0.052 M NO ₂			=	$\frac{[0.080]}{[0.060]^2}$	=	22.22		
			Keq	=	[<u>N₂O4</u>] [NO ₂] ²				
			22.22	=	[<u>N₂O₄]</u> [0.052] ²				
			[N ₂ O ₄]	=	0.0600 M	5.00 L	x	0.0600 M =	0.30 moles
			no. of moles of N ₂ O ₄	=	5.00 L x	0.0600 M	1 =	0.30 moles	

Worksheet #10 Equilibrium Calculations

Solve each problem and show all of your work in your portfolio.

1. At equilibrium, a 2.0 L flask contains: $0.200 mol of PCl_5 0.30 mol of H_2O 0.60 mol of HCl 0.300 mol of POCl_3$ Calculate the Keq for the reaction: $PCl_5 (g) + H_2O (g) <math>\hat{a}_{\pm,x}^{\pm}$ 2HCl (g) + POCl_3 (g)

Keq = 0.90

2. Keq= 798 for the reaction:
2SO_{2 (g)} + O_{2 (g)} â‡, 2SO_{3 (g)}.
In a particular mixture at equilibrium, [SO₂]= 4.20 M and [SO₃]= 11.0M. Calculate the equilibrium [O₂] in this mixture.

$[O_2] = 8.60 \text{ X} 10^{-3} \text{ M}$

3. Consider the following equilibrium: $2SO_2$ (g) $+ O_2$ (g) $\hat{a}_{,,,} 2SO_3$ (g)

When a 0.600 moles of SO₂ and 0.600 moles of O₂ are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium $[SO_3]$ is to be 0.250M. Calculate the Keq value.

(3 marks)

4. $H_{2}(g) + S(s) \hat{a}_{\pm}, H_{2}S(g)$ Keq= 14

0.60 moles of H₂ and 1.4 moles of S are placed into a 2.0L flask and allowed to reach equilibrium. Calculate the [H₂] at equilibrium. (4 marks)

Don't count S. It is a solid! [H₂] = 0.02 M

5. Keq=0.0183 for the reaction:

2HI (g) $\hat{a} \ddagger$, $H_{2(g)} + I_{2(g)}$

If 3.0 moles of HI are placed in a 5.00L vessel and allowed to reach equilibrium, what is the equilibrium concentration of H₂?

 $[H_2] = 0.064 \text{ M}$

6. Consider the equilibrium:

 $I_{2(g)} + Cl_{2(g)} \hat{a}_{\pm, 3} 2ICl_{(g)} Keq = 10.0$

The same number of moles of I_2 and Cl_2 are placed in a 1.0L flask and allowed to reach equilibrium. If the equilibrium concentration of ICl is 0.040 M, calculate the initial number of moles of I_2 and Cl_2 .

	I _{2 (g)} +	Cl _{2 (g)} â‡	;, 2ICl _(g)	Keq = 10.0
I C E	x 0.020 x - 0.020	x 0.020 x - 0.020	0 0.040 0.040	
(x (x	$\frac{(0.040)^2}{-0.020)^2}$ -0.020) -0.020)	= 10.0 = 3.16) 522	
.04	= -0.0	63244 +	3.1622x	
0.10	3244	= 3.16	522x	
x	= 0.03	3 M		
1.0 I	x 0.033 <u>m</u> I	$\underline{ole} = 0.033$	mole	

7. Consider the equilibrium: $2ICl_{(g)} \hat{a}_{\ddagger}, I_{2(g)} + Cl_{2(g)}$ Keq= 10.0

If x moles of ICl were placed in a 5.0 L container at 10 $^{\circ}$ C and if an equilibrium concentration of I₂ was found to be 0.60 M, calculate the number of moles ICl initially present.

2ICl_(g) ⇄ $I_{2(g)}$ + $Cl_{2(g)}$ Keq= 10.0 0 0.60 0.60 0 I х C E 0.60 0.60 1.2 x – 1.2 $\frac{(0.60)^2}{(x-1.2)^2} = 10.0$ $\frac{0.60}{(x-1.2)} = 3.162$ 0.60 = 3.162x - 3.79444.3944 = 3.162xx = 1.3896 M 5.0 L x <u>1.3896 moles</u> = 6.9 moles L

8. A student places 2.00 moles SO₃ in a 1.00 L flask. At equilibrium $[O_2] = 0.10$ M at 130 °C. Calculate the K_{eq}.

	280 _{2(g)}	+	O _{2(g)} ⇄	2SO _{3(g)}
I C F	0 +.20 20	0 +.10	2.0 - 0.20	Note this reaction starts with a product and shifts left to go to equilibrium. So add on the left and subtract on the right.
Е = ($(1.8)^2 = 810$.10	1.8	

Keq = $(\underline{1.8})^2$ = 810 (0.1)(.2)²